MATH 147, SPRING 2021: CONTENT AND PRACTICE PROBLEMS FOR EXAM 3

You should know the following topics for Exam 3.

- (i) Triple integrals, including spherical coordinates, cylindrical coordinates, and the change of variables formula.
- (ii) Arc length and line integrals of scalar and vector valued functions.
- (iii) Surface area and surface integrals of scalar functions and vector fields.
- (iv) The divergence of a vector field and the Divergence Theorem.

Practice Problems.

1. Calculate $\iint \int_B y^2 z^2 \, dV$ for B the solid bounded by the paraboloid $x = 1 - y^2 - z^2$ and the plane x = 0.

2. Calculate $\int \int \int_B z^3 \sqrt{x^2 + y^2 + z^2} \, dV$, for B the solid hemisphere with radius 1 and $z \ge 0$.

3. Let B_0 be the parallelepiped spanned by the vectors $2\vec{i} - \vec{j} + k$, $3\vec{i} + k$, $4\vec{j} - \vec{k}$ and B the parallelepiped obtained by translating the corner of B_0 at the origin to the point (3,2,1). Calculate $\int \int_B 2x - y + 3z \, dV$.

4. Let *C* be a curve that starts at the north pole of the sphere of radius *R* centered at the origin and ends at the south pole. You can choose any such *C*. Find a parametrization of *C* and calculate the line integrals $\int_C x + y + z \, ds$ and $\int_C \mathbf{F} \cdot d\mathbf{r}$, for $\mathbf{F} = xi + yj + zk$.

5. Let S denote the top half of the sphere of radius R centered at the origin and consider the scalar function $f(x, y, z) = \sqrt{1 + x^2 + y^2 + z^2}$. Calculate $\int \int_S f(x, y, z) \, dS$ in two ways :

- (i) Intuitively, by just writing down your answer. You must justify this.
- (ii) Directly, using a parametrization of S.

6. For the vector field $\vec{F} = 3z^2 \vec{k}$, use the limit definition of the divergence with decreasing spheres to show that $Div(\vec{F})(P) = 6z_0$, for any point $P = (x_0, y_0, z_0)$.

7. Let S be that portion of the plane x + y - z = 0, with $0 \le x \le a$ and $0 \le y \le b$, for a, b > 0 and let $\vec{F} = x\vec{i} + 2y\vec{j} + 3\vec{k}$. Show by direct calculation that the surface integral $\int \int_{S} \vec{F} \cdot d\vec{S}$ can change, depending upon the parametrization of S. Be sure to exhibit explicitly two different parametrizations of S.

8. Let S be that portion of the paraboloid $z = x^2 + y^2$ inside the cylinder $x^2 + y^2 = 4$.

- (i) Calculate the surface area of S.
- (ii) Calculate the surface integral $\int \int_S x^2 + y^2 \, dS$.

9. Let *B* be the solid bounded by the closed surface *S* which is that portion of the cone $z = \sqrt{x^2 + y^2}$, with $1 \le z \le 2$. verify the Divergence Theorem for $\mathbf{F} = xi + yj + z^2k$.

10. Let *B* denote the solid sphere of radius *R* centered at the origin, and let P = (0, 0, R) denote the north pole. Find the average value of the distance of points $(x, y, z) \in B$ to the point *P*.

11. Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$ for $\mathbf{F} = x^2 y i + y^2 z j + z^2 x k$, for $C : \mathbf{r}(t) = e^{-t} i + e^{-2t} j + e^{-3t} k$, with $0 \le t < \infty$.

12. Find the volume of the solid W, whose boundary is a closed surface, if

$$\int \int_{\partial W} \{(x + xy + z)i + (x + 3y - \frac{1}{2}y^2)j + 4zk\} \cdot d\mathbf{S} = 16.$$